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Fluctuation relation for the temperature derivative of Lyapunov exponents
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We derive a fluctuation expression for the temperature derivative of the largest Lyapunov exponent
for a large system of classical particles in contact with a heat bath. The resulting expression is strikingly
similar to the statistical-mechanical fluctuation expression for the temperature derivative of thermo-

dynamic variables in a canonical ensemble.
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In this paper we exploit a recently established analogy
[1] between nonequilibrium statistical mechanics in phase
space and the dynamics of Lyapunov instability in
tangent space to derive a fluctuation expression for the
temperature derivative of the largest Lyapunov exponent
for a classical N-body system. This fluctuation expres-
sion has a close resemblance to the expression for the
temperature derivative of thermodynamic functions as
evaluated in the canonical ensemble. We also provide
computer-simulation data which support the validity of
our fluctuation relation.

We write the equations of motion for an autonomous,
N-body, classical system as

I'=G(I"), (1)

where I' is the phase-space vector consisting of the posi-
tion coordinates and the momenta of all N particles in the
system. We can define a separation vector §,=I",—TI,
between two phase space vectors I'j and I';. If the length
of the separation vector goes to zero it becomes a tangent
vector whose equation of motion is [1]
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where T=T(T) is the stability or Jacobian matrix of the
equations of motion. The largest, i.e., most positive,

Lyapunov exponent, A_,,, is obtained as the limit [2]
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where 8,(¢)=18,(¢)|.

For our present purposes it is convenient to compute
this Lyapunov exponent using a continuous rescaling
method [3,4]. Consider a constrained tangent vector 8
whose length is held constant,
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It is easy to show that there is an exact relation [1] be-
tween the largest Lyapunov exponent and the long-time -
average of the multipler £, used to contain the tangent
vector length,
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Suppose we consider the ensemble averaged response

of §((T*), {T'*}={TI,8{}, to an initial tangent space dis-
tribution f (T'*,0),
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This means that the initial phase of the N-body system,
I'=TI(0), is distributed canonically and the ensemble
temperature is T=1/kgf3 where kp is Boltzmann’s con-
stant. The initial tangent vector §;=48,(0) is uniformly
distributed on a 6 N-dimensional hypersphere of radius d.

Assuming the equivalence of time and ensemble aver-
ages, the standard methods of response theory [5] can be
used to calculated the largest Lyapunov exponent.

A= lim (£,(0) = lim [dT*§(T*)f(T*,0) . (D)
t— t—>
If the system consists of N particles in three dimen-

sions, and if the dynamics conserves energy H, and the
tangent vector length 8,(¢), one can show that

f(Ir*n=
Jdr*8(852—d?) exp
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The factor of 6N appearing in the exponent arises from
the fact that [3/0*]-dT*/dt=—6N¢,; and
df(*,t)/dt=—[08/0L*]-dT* /dt. Substituting (8) into
(7), differentiating the resulting equation for {£,,(¢)) with
respect to time, and reintegrating shows that

A= lim (§;,(1)) = lim 6Nf0’ds<§”(0)g“(s)> )

This relation, which superficially resembles the famous
Green-Kubo relations for transport coefficients, has re-
cently been tested numerically [1] and was found to be in
agreement with computer-simulation results.

From Egs. (7) and (8), one can derive expressions for
the temperature derivative of the largest Lyapunov ex-
ponent. If we subject a canonical ensemble of systems to
Newtonian constant-energy dynamics, the time propaga-
tor is clearly independent of the Boltzmann factor f3.
One can therefore easily compute the derivative with
respect to 3 as

S eu) == [dT*g,Hof (1)

+ [dT*Hof (1) [ dT*5,,f (1)
=— (& (OH (1)) +{ ()Y CH(2))
=—(AL(OAH (1)) , (10)
where
AB(t)=B(1)—(B(1)) .

This exact expression for the temperature derivative of
the largest Lyapunov exponent bears a striking resem-
blance to the corresponding expression for the tempera-
ture derivative of thermodynamic quantities in the
canonical ensemble [6].

We decided to test (10) numerically by using
molecular-dynamics computer simulations. Evaluating
the expression as written, (10) would require performing
an ensemble of constant-energy molecular-dynamics
simulations from an initial ensemble of phases and
tangent vectors distributed according to (6). This would
be time consuming and cumbersome.

It has been known for some time that in an ergodic sys-
tem one can generate canonical ensemble averages by
time averaging along a single phase-space trajectory gen-
erated by Nosé-Hoover equations of motion,

q,=p;/m ,

p;=F,—ap;, 1y
2[’:’2/2’"

a= W—l ~,

where a is the thermostatting multiplier and 7 is the
Nosé-Hoover time constant. However, if we attempt to
calculate the temperature derivative 0/0B using these
equations, we should in principle obtain new terms not
represented in (10) because the time propagator itself is
directly dependent on S.

This problem is easily avoided. If we replace the last

equation in (11) by
zp,-z/Zm

o= | ——1| /7, (12)

S [p;(0)]*/2m

i

it is trivial to show that an ensemble of such trajectories
has precisely the same long-time tangent-space distribu-
tion lim,_, .,/ (T'*,¢) as the distribution of states along a
single trajectory generated by (11). Moreover, the propa-
gator in (12) has no explicit temperature dependence.
Therefore the temperature derivative of the Lyapunov ex-
ponent can be calculated from a time average along a sin-
gle trajectory as

a}\tl .
= lim
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We carried out equilibrium molecular-dynamics simu-
lations of N =56 disks of units mass, characterized by the
Weeks-Chandler-Anderson (WCA) interaction potential
o(r),

4[r 12— %] for r <276
$(r)= 0 for r>21/6 (14)

within periodic boundary conditions. The length of the
tangent vector 8, was fixed using Eq. (4) at 107,

In Fig. 1 we show the variation of the largest
Lyapunov exponent A; with respect to B, at a density
p=N/V=0.8 and a temperature 7~ 1.0. Equation (5)
was used to calculate A;. As can be seen, over this nar-
row range of 3 the data are rather accurately represented
as a linear function of B. At B=1.0 the slope
9A,/9Bl,=—1.6110.02. This estimate of the tempera-
ture derivative was compared with a calculation using
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FIG. 1. We show the variation of the largest Lyapunov ex-
ponent with respect to the reciprocal of the temperature, 3.
The system is 56 WCA particles at a reduced density of 0.8.
The results are shown in reduced units as explained in the text.
As can be seen, the data are consistent with a linear variation
with B8 and dA,/9B|,= —1.6+0.02. This slope agrees with that
predicted from our fluctuation formula (13), namely
dA, /36|, = —1.60+0.03.
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our fluctuation formula (13) from a simulation lasting
33000 reduced time units, dA,/38B|;= —1.60£0.03. The
results obtained therefore verify (13) within estimated sta-
tistical uncertainties.

The work described in this paper shows that Lyapunov
exponents can be calculated and characterized by
methods that are extensions of those employed in none-
quilibrium statistical mechanics. Using the same
methods as those used here one can also derive an analo-
gous fluctuation formula for the pressure dependence of
the largest Lyapunov exponent in many-body systems.
These methods can be extended to the full 6N Lyapunov
exponents but the presently known formulas are, for the
smaller Lyapunov exponents, somewhat cumbersome.

Similarly expressions can be derived for the temperature
derivative of the largest Lyapunov exponent in thermos-
tatted nonequilibrium systems rather than the equilibri-
um case treated here.

Finally, we have recently proved a direct relation be-
tween the difference of the two maximal Lyapunov ex-
ponents of nonequilibrium steady states and the transport
coefficients describing the dissipation in the system,
preventing its relaxation to equilibrium [7]. This latter
relation shows that the variation of Lyapunov exponents
with respect to thermodynamic state variables is impor-
tant macroscopically since it can be related to the corre-
sponding variation of transport coefficients to those same
state variables.
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